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Abstract We study the motion of a classical point body of mass M , moving under the
action of a constant force of intensity E and immersed in a Vlasov fluid of free particles,
interacting with the body via a bounded short range potential Ψ . We prove that if its initial
velocity is large enough then the body escapes to infinity increasing its speed without any
bound (runaway effect). Moreover, the body asymptotically reaches a uniformly accelerated
motion with acceleration E/M . We then discuss at a heuristic level the case in which Ψ (r)

diverges at short distances like gr−α , g,α > 0, by showing that the runaway effect still
occurs if α < 2.

Keywords Viscous friction · Runaway particle · Vlasov fluid · Hamiltonian system

1 Introduction

In the present paper we study the longtime behavior of a classical point body moving un-
der the action of a constant force E and immersed in an infinitely extended medium. This
problem has been largely studied in the framework of kinetic theories, while here we want
to obtain some rigorous results in the case of a fully Hamiltonian system.

Of course, when the medium is absent the body performs an uniformly accelerated mo-
tion. In the presence of a medium the motion is much more complicated and its asymptotic
behavior depends on the nature of the background. In general, when the medium is homo-
geneous two different effects can happen: for strong body/medium interactions the motion
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of the body converges (in average) to an uniform one, while for weak body/medium interac-
tions the body with a large initial velocity escapes to infinity increasing its velocity without
bound. In the first case we have a reasonable model of viscous friction, in the second case
we are in presence of a runaway particle (see [27] for a discussion of this effect in the
framework of kinetic theories).

Concerning the assumptions on the medium, a natural choice is to consider a system of
infinitely many particles, mutually interacting via a pair potential Φ , and interacting with
the body via a potential Ψ . Unfortunately, this problem is very hard. Actually, the same de-
finition of the model is not obvious, due to the difficulty to prove the existence of dynamics
for infinitely extended systems. We recall that the time evolution of systems with infinitely
many particles has been investigated in several papers: we only quote some of the main re-
sults [3, 10, 17, 19–21, 24, 25], other references can be found therein. Long time estimates
drastically depend on the spatial dimensions of the system, and good enough estimates are
known only for one dimensional models with bounded interactions [9]. The runaway effect
has been shown to occur for large external force E when the medium is confined in a tube
[6], and for any strength of E in the case of particles moving along a line [7]. For sin-
gular interactions, the strict one-dimensional case becomes too particular, while in general
we can only make conjectures. In [6], for interaction singular as r−α the threshold case is
conjectured to be α = 2, but a rigorous proof seems too hard.

To make further steps we must simplify the medium. A possible way is to consider a mean
field approximation, i.e. to put the body in a Vlasov fluid. In the mean field approximation,
well known in Astronomy and in Plasma physics, the background is composed by a gas of
particles of mass going to zero and the number of particles per unit volume going to infinity
in such a way that the mass density remains finite. The mean field limit of the dynamics of
interacting particle systems in the case of finite total mass has been studied in [4, 18, 28, 30]
for bounded interaction and in [22] for singular force like r−α , α < 1. The limit in the case
of infinite total mass has been proved in [5] in the case of bounded interaction and spatial
dimension one. For unbounded mass, the existence of the dynamics has been proved in three
dimensions for a Vlasov fluid with bounded interactions [11], and in two dimension for the
Helmholtz equation [12].

In this framework, some results have been recently obtained. In [13, 15] the interaction Ψ

is assumed of hard core form, precisely Ψ (|r|) = ∞ for r ∈ Λ, Ψ = 0 otherwise, where Λ

is a convex set of R
3 (this means that an element of the medium evolves freely out of Λ

and interacts elastically on ∂Λ). The initial phase space density of the medium is assumed
spatially homogeneous out of Λ and with Gaussian distribution of the velocities. It is proved
the existence of a stationary state in the motion of the body for any intensity of a spatially
constant force E, and a detailed analysis of the approach to the limiting velocity is given.
This result has been extended to forces not constant in space in [14], and a similar result
has been obtained changing the elastic boundary condition with the diffusive ones (see [1,
2] for analytical and numerical results). In the case of singular interaction of the form r−α ,
α > 0 the problem is open. We only recall the paper [8], where the runaway particle effect
has been proved when Ψ has the form r−α , α < 2, the medium is composed by a Vlasov
fluid, the mutual interaction Φ is bounded, the influence of the body on the fluid motion is
neglected, and the system has initially an one-dimensional symmetry.

In the present paper we assume Φ = 0, the body/medium interaction Ψ bounded and
with a short range, the background initially at rest, and we find not only the runaway effect
but also the exact asymptotic velocity of the body. Then we discuss at a heuristic level the
case in which Ψ is always at short range but diverging at short distances as r−α , α < 2, case
in which also the runaway effect is expected to take place. In [6] it has been conjectured that
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α = 2 is the threshold value for the existence or not of the runaway effect. A discussion on
the existence of a stationary state for this model [16] improves this conjecture.

The plan of the paper is the following. In Sect. 2 we introduce the model and state the
main result. In Sect. 3 we prove the result for Ψ bounded. Finally, in Sect. 4 we discuss at a
heuristic level the case of singular interaction.

2 The Model

We consider the motion of a point body of mass M and position ξ , under the action of a
constant force E of intensity E and directed along the x1-axis, i.e. E = (E,0,0). The body
is immersed in a fluid of free particles, that interact with the body via a force of pair potential
Ψ (|r|). We assume the medium to be a Vlasov fluid of free particles in three dimensions,
namely the pair of functions,

(x,v) → (X(x,v; t),V (x,v; t)), f0(x,v) → f (x,v; t), (2.1)

with (x,v, t) ∈ R
3 × R

3 × R, solution to

Ẋ(x,v; t) = V (x,v; t), (2.2)

V̇ (x,v; t) = −∇XΨ (|X(x,v; t) − ξ(t)|), (2.3)

(X(x,v;0),V (x,v;0)) = (x,v), (2.4)

f (X(x,v; t),V (x,v; t), t) = f0(x,v), (2.5)

where ξ(t) is the coordinate of the point body, f is the mass density in phase space of the
free gas, and (X,V ) are the characteristics of the fluid.

In the case of smooth initial data, f (X(x,v; t),V (x,v; t), t) satisfies the differential
equation,

(∂t + v · ∇x − ∇Ψ (|x − ξ(t)|) · ∇v)f (x,v; t) = 0. (2.6)

The system (2.2)–(2.5) is completed by the equation of motion of the body,

M ξ̈(t) = E −
∫

dx dv ∇ξΨ (|ξ(t) − x|)) f (x,v; t), (2.7)

with initial conditions

ξ(0) = ξ 0, ξ̇(0) = ξ̇ 0. (2.8)

This kind of system, in which a Vlasov fluid is coupled to a massive body, has been
firstly introduced in connection with the so-called piston problem, see [23] and also [26]
and references quoted therein. In our problem the fluid is unbounded and so, in principle,
the existence of the solutions is not obvious. In fact, it is easy to exhibit initial conditions for
which the time evolution produces singularity in the motion after a finite time. This happens
because very far away particles could arrive very fastly close to the body. These situations
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are pathologic from a physical point of view and can be removed in the case of bounded
interaction by assuming that initially

f0(x,v) ≤ ρ0

(
β

2π

)3/2

e−βv2/2, ρ0 > 0, (2.9)

where β = (kT )−1 > 0, T is the temperature, and k the Boltzmann constant, i.e. f is
bounded by a homogeneous Gibbs state. In this case the proof of existence and unique-
ness of solutions is quite easy. It can be achieved by means of a limiting procedure, where
the solution is constructed as the limit of a suitable sequence of partial dynamics of finite
total mass.

As discussed at the end of the introduction, in this paper we shall assume that the fluid
is initially at rest, with constant spatial density ρ(x,0) = ρ0 > 0. This corresponds to the
limiting case β = ∞ (zero temperature), which can be defined by means of the Lagrangian
formulation,

⎧⎪⎪⎨
⎪⎪⎩

Ẍ(x,0; t) = −∇XΨ (|X(x,0; t) − ξ(t)|),
M ξ̈(t) = E − ρ0

∫
dx ∇ξΨ (|ξ(t) − X(x,0; t)|),

(X(x,0;0), Ẋ(x,0;0)) = (x,0), (ξ(0), ξ̇(0)) = (ξ 0, ξ̇ 0).

(2.10)

Also in this case the existence and uniqueness of global solutions is obtained by means
of a limiting procedure. We only sketch the main steps. We first introduce the “n-partial
dynamics” (X(n)(x,0; t), ξ (n)(t)), governed by a system like (2.10) where (2.10)2 is replaced
by

M ξ̈
(n)

(t) = E − ρ0

∫
|x|≤n

dx ∇ξΨ (|ξ (n)(t) − X(n)(x,0; t)|). (2.11)

The well-posedness of this truncated problem can be established by a standard argument
based on Picard approximations. The solution to the original problem is now obtained in the
limit n → ∞. Such a limit exists since the velocities are bounded uniformly with respect
to the cut-off parameter n. More precisely, for each T0 > 0 there exists a positive real C0 =
C0(ρ0, ξ̇ 0, T0) such that

∣∣Ẋ(n)
(x,0; t)∣∣ ≤ ‖∇Ψ ‖∞T0,

∣∣ξ̇ (n)
(t)

∣∣ ≤ C0 ∀t ∈ [0, T0].

In fact, the first inequality is an immediate consequence of (2.10)1; the second one then
follows from (2.11) and the previous one. We omit the details.

3 Bounded Interaction

Assume Ψ (|r|) be a twice differentiable function of r ∈ R
3 and let exist a positive constant

r0 < ∞ such that Ψ (r) = 0 if r > r0. We consider the system (2.10) and assume that initially
the point body is in the origin, ξ 0 = (0,0,0), with velocity along the x1-axis, ξ̇ 0 = (ξ̇0,0,0),
ξ̇0 > 0. By symmetry the body will move along the x1-axis, i.e. ξ(t) = (ξ(t),0,0) for some
ξ(t) ∈ R.
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Theorem 3.1 For each intensity E of the force, there exists a threshold value ξ̇∗ such that for
ξ̇0 > ξ̇∗ the body escapes to infinity with (asymptotically) a uniformly accelerated motion,

lim
t→∞

ξ̇ (t)

t
= E

M
. (3.1)

We have to prove that the friction force exerted by the fluid on the body is initially
bounded and vanishes asymptotically in time. This will be achieved by means of a bootstrap
argument. We start with some preliminary notation. We define

T ∗ := sup
{
t > 0: G(s) < ξ̇(s) < 3G(s) ∀ s ∈ [0, t]}, (3.2)

where

G(t) := 1

2

(
ξ̇0 + E

M
t

)
. (3.3)

Since ξ̇0 > 0, by the continuity of the motion the set on the right hand side of (3.2) is non
empty, thence T ∗ ∈ (0,+∞]. We shall study the evolution during the time interval [0, T ∗),
getting sharper estimates if ξ̇0 is large enough, that will imply T ∗ = +∞ and (3.1).

In the next two preliminary lemmata we write x(t) = (x1(t), x2(t), x3(t)) as a shorthand
notation for a generic characteristic X(x,0; t) and let

τ := inf{t ∈ [0, T ∗): |ξ(t) − x(t)| ≤ r0},
τ + δ := sup{t ∈ [0, T ∗): |ξ(t) − x(t)| ≤ r0},

(3.4)

setting τ = τ + δ = T ∗ if the sets on the right hand side are empty. In other words, if a
fluid particle interacts with the body during the time interval [0, T ∗) then τ < T ∗ denotes
the time at which the interaction begins and τ + δ ≤ T ∗ the time at which it finishes. In
Lemma 3.1 below, we show that if the initial velocity of the body is large enough then
the time of interaction with a fluid particle is very short and the acceleration of the body
is uniformly bounded in time. As a consequence, in Lemma 3.2, we then show that the
momentum transferred by the body to a fluid particle is very small.

Lemma 3.1 There exist γ,A > 0 such that if ξ̇0 > γ the following holds. For any charac-
teristic x(·),

δ ≤ 5r0

G(τ)
, (3.5)

|ξ̈ (t)| ≤ A ∀t ∈ [0, T ∗). (3.6)

Proof We start with the proof of (3.5). Let sτ := 5r0/G(τ) and consider a characteristic
x(t) such that τ + sτ < T ∗ (otherwise there is nothing to prove). Since ẋ(τ ) = 0, for any
t ∈ [τ, T ∗),

ξ(t) − x1(t) = ξ(τ ) − x1(τ ) +
∫ t

τ

ds ξ̇ (s) −
∫ t

τ

ds (s − τ) ẍ1(s).

By the equation of motion (2.10)1, |ẍ(t)| ≤ ‖Ψ ′‖∞. Then, by (3.2), (3.3), and (3.4) it follows
that, for any t ∈ [τ, T ∗),

ξ(t) − x1(t) ≥ −r0 + G(τ)(t − τ) − 1

2
‖Ψ ′‖∞(t − τ)2.
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Since G(τ) ≥ ξ̇0/2, for ξ̇0 > 4
√‖Ψ ′‖∞r0 the right hand side in the above display is larger

than r0 if t − τ ∈ (s−, s+) with

s− = 4r0

G(τ) + √
G(τ)2 − 4‖Ψ ′‖∞r0

, s+ = G(τ) + √
G(τ)2 − 4‖Ψ ′‖∞r0

‖Ψ ′‖∞
.

Clearly sτ ∈ (s−, s+) for any ξ̇0 sufficiently large. Furthermore, |ẋ1(τ + sτ )| ≤ ‖Ψ ′‖∞sτ =
5‖Ψ ′‖∞r0/G(τ). Therefore, we can find γ > 0 so large that, for any ξ̇0 > γ ,

ξ(τ + sτ ) − x1(τ + sτ ) > r0, ẋ1(τ + sτ ) < G(τ).

Since ξ̇ (t) > G(τ) for t ∈ [τ, T ∗), the fluid particle cannot interact again with the body after
time sτ , i.e. δ ≤ sτ and (3.5) is proved.

The bound (3.6) is now a consequence of (3.5). In fact, since ξ̇ < 3G on [0, T ∗) and
recalling that the fluid particle is initially at rest, for any ξ̇0 > γ and t ∈ [τ, τ + δ],

|ξ(t) − x(0)| = |ξ(t) − x(τ )| ≤ r0 + |ξ(t) − ξ(τ )| (3.7)

≤ r0 + 3G(τ + δ)δ ≤ r0 + 15r0
G(τ + δ)

G(τ)

≤ r0 + 15r0

(
1 + Eδ

Mξ̇0

)
≤ r0 + 15r0

(
1 + 10r0E

Mξ̇ 2
0

)

≤ 16r0 + 150r2
0 E

Mγ 2
=: Rγ , (3.8)

where we used (3.5) and definitions (3.3) and (3.4). Therefore, solely the initial positions x
in the ball of center ξ(t) and radius Rγ contribute to the integration in the right hand side of
(2.10)2. Hence, (3.6) holds with A = (E/M)+c‖Ψ ′‖∞ for a sufficiently large constant c. �

Lemma 3.2 There exist γ ′ > γ and B,C > 0 such that if ξ̇0 > γ ′ the following holds. For
any characteristic x(·),

|ẋ(t)| ≤ B

G(τ)
∀ t ∈ [0, T ∗) (3.9)

and, if τ + δ < T ∗,

|ẋ1(t)| = |ẋ1(τ + δ)| ≤ C

G(τ)3
∀ t ∈ [τ + δ, T ∗). (3.10)

Proof Actually, the bound (3.9) is a consequence of (3.5) and it is therefore valid for any
ξ̇0 > γ . Indeed,

|ẋ(t)| ≤
∫ τ+δ

τ

ds
∣∣Ψ ′(|x(s) − ξ(s)|)∣∣ ≤ B

G(τ)
∀ t ∈ [0, T ∗), (3.11)

where B := 5r0‖Ψ ′‖∞. Assume now that τ +δ < T ∗. We expect that the total variation of ẋ1

is really very small for large velocities, since the effects produced when x1 > ξ compensate
in part those produced when x1 < ξ . To show this fact we introduce the quantity p(t) =
(p1(t),p2(t),p3(t)) defined as

p(t) = ẋ(t) + Ψ (|x(t) − ξ(t)|)
|ẋ(t) − ξ̇(t)|2 (ẋ(t) − ξ̇(t)). (3.12)
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Obviously,

p(t) = ẋ(t) ∀ t ∈ [0, τ ) ∪ (τ + δ, T ∗),

so that, since before the collision the fluid particle is at rest,

|ẋ1(τ + δ)| ≤
∫ τ+δ

τ

ds |ṗ1(s)|. (3.13)

We next show that during the collision ṗ1(t) is quite small, thence a finer estimate for
|ẋ1(τ + δ)| will follow by (3.13). By the equation of motion (2.10)1,

ẍ(t) = −Ψ ′(|x(t) − ξ(t)|)
|x(t) − ξ(t)|

[
x(t) − ξ(t)

]
. (3.14)

By (3.12), (3.14), and some straightforward computation,

ṗ1(t) = − Ψ ′(|x − ξ |)
|x − ξ ||ẋ − ξ̇ |2

[
(x1 − ξ)(ẋ2

2 + ẋ2
3 ) + (ξ̇ − ẋ1)(x2ẋ2 + x3ẋ3)

]

+ Ψ (|x − ξ |)
|ẋ − ξ̇ |2

[
−(ξ̈ − ẍ1) + 2(ξ̇ − ẋ1)(ξ̇ − ẋ) · (ξ̈ − ẍ)

|ẋ − ξ̇ |2
]
,

whence

|ṗ1(t)| ≤ ∣∣Ψ ′(|x − ξ |)∣∣ |ẋ|2 + 2|ẋ|
|ẋ − ξ̇ |2 + 3‖Ψ ‖∞

|ξ̈ | + |ẍ|
|ẋ − ξ̇ |2

≤ ∣∣Ψ ′(|x − ξ |)∣∣ |ẋ|2 + 2|ẋ| + 3‖Ψ ‖∞
|ẋ − ξ̇ |2 + 3A‖Ψ ‖∞

|ẋ − ξ̇ |2 ,

where we used (3.6) and again (3.14) in the last inequality. Since ξ̇ (t) > G(τ) ≥ ξ̇0/2 on
[τ, T ∗), by (3.9) and the above estimate we can find γ ′ > γ so large that if ξ̇0 > γ ′ then

|ṗ1(t)| ≤ B + 4‖Ψ ‖∞
G(τ)2

∣∣Ψ ′(|x(t) − ξ(t)|)∣∣ + 4A‖Ψ ‖∞
G(τ)2

∀ t ∈ [0, T ∗).

By plugging the previous inequality in (3.13), estimating the time integral of the force as in
(3.11), and using (3.5) we get

|ẋ1(τ + δ)| ≤ C

G(τ)3
,

where C := B2 + 4B‖Ψ ‖∞ + 20A‖Ψ ‖∞r0. Since ẋ1(t) = ẋ1(τ + δ) for any t ∈ [τ + δ, T ∗),
the estimate (3.10) is thus proved. �

Proof of Theorem 3.1 We shall prove the theorem with a large enough ξ̇∗ > γ ′, γ ′ as in
Lemma 3.2. By the equations of motion (2.10)1 and (2.10)2, since ξ̇(t) = (ξ̇ (t),0,0) and
denoting by X1(x,0; t) the first component of the characteristic X(x,0; t), we have

Mξ̈(t) + ρ0

∫
dx Ẍ1(x,0; t) − E = 0.
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Therefore, by integrating in time,

Mξ̇(t) + ρ0

∫
dx Ẋ1(x,0; t) − Et = Mξ̇0,

whence ∣∣∣∣ξ̇ (t) − ξ̇0 − E

M
t

∣∣∣∣ ≤ ρ0

M

∫
dx

∣∣Ẋ1(x,0; t)∣∣. (3.15)

Since ξ(·) is increasing on [0, T ∗), if Ẋ1(x,0; t) �= 0 for some t ∈ [0, T ∗) then the initial
position x = (x1, x2, x3) =: (x1,x

⊥) of the fluid particle is such that x1 ∈ (−r0, ξ(t) + r0)

and |x⊥| ≤ r0. Moreover, by (3.7), if t ∈ [τ, τ + δ] then |x1 − ξ(t)| ≤ Rγ . Therefore,

∫
dx

∣∣Ẋ1(x,0; t)∣∣ =
∫ N0

−r0

dx1

∫
|x⊥|≤r0

dx⊥ ∣∣Ẋ1(x,0; t)∣∣

+
Nt −1∑
k=N0

∫ k+1

k

dx1

∫
|x⊥|≤r0

dx⊥ ∣∣Ẋ1(x,0; τ + δ)
∣∣

+
∫ ξ(t)+r0

Nt

dx1

∫
|x⊥|≤r0

dx⊥ ∣∣Ẋ1(x,0; t)∣∣,

with N0 := [r0] + 1 and Nt := [ξ(t) − Rγ ] − 1. The quantities |Ẋ1(x,0; t)| and
|Ẋ1(x,0; τ + δ)| can be bounded, respectively, as in (3.9) and (3.10). Moreover, since
ξ̇ < 3G on [0, T ∗), if x1 ∈ [k, k + 1] then 3G(τ)τ + r0 ≥ k, so that, by (3.3),

6M

E
G(τ)2 − 3Mξ̇0

E
G(τ) − (k − r0) ≥ 0 ∀x1 ∈ [k, k + 1],

thence

G(τ) ≥
√

E

6M
(k − r0) ∀k > N0 ∀x1 ∈ [k, k + 1].

Therefore,

∫
dx

∣∣Ẋ1(x,0; t)∣∣ ≤ B
(2N0 + Rγ )πr2

0

G(0)
+ C

∞∑
k=N0+1

(
6M

E(k − r0)

)3/2

.

In conclusion, there exists C1 > 0 such that for any ξ̇0 > γ ′ and t ∈ [0, T ∗),
∣∣∣∣ξ̇ (t) − ξ̇0 − E

M
t

∣∣∣∣ ≤ C1. (3.16)

Recalling the definition (3.3) of G, by (3.16) it follows that there exists ξ̇∗ > γ ′ such that

3

2
G(t) < ξ̇(t) <

5

2
G(t) ∀ t ∈ [0, T ∗) ∀ ξ̇0 > ξ̇∗.

By the continuity of the motion and the definition (3.2) of T ∗ the above bound implies
that T ∗ = +∞ for any ξ̇0 > ξ̇∗. In particular, (3.16) is valid for any positive time and the
limit (3.1) is thus verified for ξ̇0 > ξ̇∗. The theorem is proved. �
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Remark 3.1 We have assumed the density of the fluid constant in the whole space. Of course,
the result and the proof do not change if we assume the initial density ρ0(x) with an axial
symmetry around the x1-axis and ρ0(x) → const. fast enough as |x| → ∞. Indeed, this
only changes the transient evolution, but the asymptotic behavior of the motion remains
unchanged.

It is natural to ask what happens if we assume the fluid initially distributed as a Gibbs
state like (2.9) (Theorem 3.1 here corresponds to the case β = ∞). For E larger than ‖Ψ ′‖∞
the result is still true [29], while for smaller E it depends on the sign of Ψ ′(r): we conjecture
that if Ψ ′(r) ≤ 0 the result remains valid; while, if Ψ ′(r) > 0 for some r , the quantity
ξ̇ (t)/t should converge to some constant possibly smaller than E/M . In fact, the body could
capture a small part of fluid, which remains with it forever, with the only effect to increase
the effective inertia (i.e. mass) of the body.

4 Singular Interaction

The spirit of this section is different from the previous one, where we have given a mathe-
matically rigorous proof on the asymptotic behavior of the system. Here we confine ourself
to a heuristic discussion of the main issues in a possible proof.

We assume Ψ (r) be a twice differentiable function for r > 0 and there exist two posi-
tive constants r1, r0 < ∞ such that Ψ = gr−α, g > 0,0 < α < 2, if r < r1, Ψ equals to a
not increasing function if r1 ≤ r ≤ r0, Ψ = 0 if r > r0. Initially we put the point body in
the origin with a fix velocity ξ̇ (0) = ξ̇0 > 0, and the fluid at rest with a constant density
ρ(x,0) = ρ0 > 0. We discuss the following conjecture, analogous to Theorem 3.1.

Conjecture For each intensity E of the force, there exists a threshold value ξ̇∗ such that for
ξ̇0 > ξ̇∗ the body escapes to infinity with (asymptotically) a uniformly accelerated motion,

lim
t→∞

ξ̇ (t)

t
= E

M
. (4.1)

The strategy of a possible proof is similar to that used in the bounded case: we assume
a behavior of the body and we evaluate the viscous friction produced by the fluid. Using an
adiabatic invariant we show that the friction is very small and vanishes at long times, so that
the behavior of the body is better than the assumption. Unfortunately, we do not prove some
(minor) steps and the discussion remains only heuristic.

In the present analysis two new points arises: (a) the interaction is singular and so the
particles of fluid near the x1-axis drastically change their velocity whatever large is the
velocity of the body; (b) some particles of the fluid can collide infinitely many times. The
first difficulty is solved by proving that these bad particles are very few when the velocity of
the body becomes large; the second difficulty is solved by showing the effect of recollisions
is negligible.

As in the bounded case we analyze the motion in the time interval [0, T ∗) where T ∗
is defined as in (3.2). It is reasonable to believe that also in this case the analogous of
Lemma 3.1 remains valid, but we did not have proved it rigorously. However, physically it
is quite obvious. In particular, since the body feels the average force due to the fluid particles
in a neighborhood of it, the bound (3.6) should be valid with a better constant A, depending
on some smoother norm of the potential rather than the maximum of the force. Moreover, at
the end of the discussion it will be clear that a proof using this assumption should imply that
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the acceleration goes to zero in average on a time interval of length vanishing as t → ∞.
But a rigorous proof of (3.6) in this context appears cumbersome and not trivial.

We explicitly discuss the more difficult case 1 < α < 2, starting with the study of the first
collision.

We analyze the motion of a fluid particle. We denote by η its impact parameter, that is
the distance between the incoming fluid particle and the x1-axis. In the plane (x2, x3) we
consider the disks Dk , centered in the origin and of radius ηk = 2kη0, k = 0,1,2, . . . . We
choose η0 = ξ̇ (t)−(1+ε), ε > 0, so that the particles with η ≤ η0 contribute at most as Const.
ξ̇ (t)−2ε in the momentum transferred to the body (per unit time). In fact, the area of this
disk is πη2

0, the body meets per unit time a number of fluid particles proportional to ξ̇ (t),
in each collision it looses a momentum 2ξ̇ (t) (corresponding to an elastic collision with a
disk) and so that the lost momentum due to particle hitting in this disk is at most Const.
ξ̇ 2(t)η2

0 = Const. ξ̇ (t)−2ε .
We now evaluate the effect of the collisions in the k-annulus Dk \ Dk−1. First we re-

mark that, by arguing as at the beginning of the previous section, it is possible to show
that the body has only one collision with each fluid particle posed in a k-annulus, and
then it overcomes such particles. Hence, the momentum lost during this collision can be
bounded as in (3.10), but here a better estimate on the constant C is needed to con-
clude the argument. We recall that in Lemma 3.2 the estimate (3.10) is proved with
C = B2 +4B‖Ψ ‖∞ +20A‖Ψ ‖∞r0, where B = 5r0‖Ψ ′‖∞ comes out from the upper bound
of the time integral of the force appearing in (3.11). In this case, since the force is repulsive
and the fluid particle is initially at rest, during the collision its distance from the x1-axes in-
creases. This implies that the norm ‖Ψ ‖∞ appearing in the expression of C can be replaced
by Const. η−α

k and that

∫ τ+δ

τ

ds
∣∣Ψ ′(|x(s) − ξ(s)|)∣∣ ≤

∫ τ+δ

τ

ds

∣∣∣Ψ ′
(√

(x1(s) − ξ(s))2 + η2
k

)∣∣∣.

To evaluate the integral on the right hand side, we recall that for ξ̇0 large enough we have
e.g. ξ̇ − ẋ1 ≥ G(τ)/2 during the collision. Therefore, by the change of integration variable
s → u := ξ − x1,

∫ τ+δ

τ

ds
∣∣Ψ ′(|x(s) − ξ(s)|)∣∣ ≤ 2

G(τ)

∫
du

∣∣∣Ψ ′
(√

u2 + η2
k

)∣∣∣

= 4ηk

G(τ)

∫ ∞

1
dσ

σ√
σ 2 − 1

∣∣Ψ ′(ηkσ )
∣∣ ≤ Const.

1

G(τ)ηα
k

,

where in the last inequality we used the explicit form of Ψ (r) as stated at the beginning of
the section. Therefore, also the constant B appearing in the expression of C can be replaced
by Const. η−α

k . The momentum transferred by the body to the fluid particle after a collision is
thus estimated by Const. η−2α

k ξ̇ (t)−3 (here we confuse G(τ) with ξ̇ (t) for a collision occur-
ring around time t ). The area Ak of the k-annulus is Const. η2

k and the number of collisions
per unit time is of the order of ξ̇ (t). In conclusion, the contribution I to the momentum lost
due to the fluid particles posed in all the annuli is bounded as

I ≤ Const. ξ̇ (t)[(2α−2)(1+ε)−2]
k∗∑

k=1

22k(−α+1), ηk∗ ≥ r0. (4.2)
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If we choose ε < (2/α) − 1 we obtain

I ≤ Const. ξ̇ (t)−2ε, (4.3)

that is a bound analogous to the one obtained for the first disk.
We now roughly discuss the effect of multiple collisions. For the moment, we suppose

that the body is governed by a uniformly accelerated motion. The only possibility for a fluid
particle to hit the body many times is to be quite close to the x1-axis. In particular, we start
by evaluating how much close for hitting the body twice. Denote by σ the impact parameter
of the fluid particle and let t1 be the time at which the first collision occurs. Due to the
monotonicity of the potential, during the collision the fluid particle feels a repulsive force
from the x1-axis which varies its orthogonal velocity by a quantity

δv⊥ �
∫ t1+δ

t1

ds |∇Ψ (x(s) − ξ(s))| σ

r0
. (4.4)

By estimating the integral as before we obtain

δv⊥ � Const.
σ

r0
ξ̇ (t1)

−1r−α
m , (4.5)

where rm is the minimal distance between the fluid particle and the body. Since rm ≈
Const. ξ̇−2/α we conclude that

δv⊥ � Const. σ ξ̇(t1). (4.6)

After the collision, the fluid particle has gained a velocity which is double than the speed
of the body. But the particle then preserves its velocity while the body accelerates almost
uniformly, and so it can be reached again after a time of the order of ξ̇ (t1). In conclusion,
the fluid particle can hit the body twice if its impact parameter σ is very small,

σ � Const. ξ̇ (t1)
−2. (4.7)

Actually, we are interested in the case when the fluid particle has a third collision. For this
to happen the impact parameter has to be very small, precisely

σ � Cξ̇(t1)
−2ξ̇ (t2)

−2 ≤ Const. ξ̇ (t1)
−4 (4.8)

where t2 is the time of the second collision and we used ξ̇ (t2) ≥ ξ̇ (t1).
To apply these ideas to the true case, some modifications are needed: taking into account

that the motion of the body is not exactly uniformly accelerated, but with a small perturba-
tion; moreover, to evaluate the effect of multiple collisions at a fixed time, we should go back
in the past up to the initial time; finally, for the repulsive force we need a lower bound (not
an approximation as in previous discussion). We do not perform this analysis in detail, but
we hope to have convinced the reader that the effects of multiple collisions are negligible.

The conclusion of the proof is now as in the bounded case: for any ξ̇0 large enough and
t ∈ [0, T ∗) we obtain

∣∣∣∣ξ̇ (t) − ξ̇0 − E

M
t

∣∣∣∣ ≤ Const.,

which implies T ∗ = +∞ and then (4.1).
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